Catalysis in Aromatic Nucleophilic Substitution. Part 4.¹ Reactions of Piperidine with 2-Methoxy-3-nitrothiophen in Benzene

By Giovanni Consiglio and Renato Noto, Institute of Organic Chemistry, University of Palermo, Via Archirafi 20, Palermo 90123, Italy

Domenico Spinelli,* Cattedra di Chimica Organica, Faculty of Pharmacy, University of Bologna, Via Zanolini 3, Bologna 40126, Italy

The rate of piperidino-substitution of 2-methoxy-3-nitrothiophen (I) in benzene as a function of amine concentration has been studied. The reaction is strongly catalysed by piperidine, being third-order overall (second-order in amine) and represents the first example of an S_NAr of an ortho- or ortho-like mononitro-substituted derivative for which base catalysis is needed in benzene. The results obtained have been interpreted by taking into account the properties of the leaving group and its peculiar ortho-like relation with the activating nitro group.

recent study¹ we reported the first example of base

 $S_{\rm N}$ Ar REACTIONS with amines of substrates containing holds with $k_0 = k_1 k_3^{\rm PIP}/k_{-1}$. At higher piperidine poor leaving groups are often base catalysed.² In a concentrations one observes a levelling-off in $k_A/[\rm PIP]$ ratios (Table 1).

catalysis (by methoxide ion) in the piperidino-substitution of an ortho-like substituted derivative, 2-methoxy-3-nitrothiophen (I), in a protic solvent (methanol). With reference to the Scheme, base catalysis has been observed¹ in methanol because the product-forming steps designated by k_2 and $k_3^{Bi}[B_i]$ are slower than or as slow as the reversion of the intermediate (II) to reactants. Since this latter reaction leads to charge neutralisation, k_{-1} is expected to increase strongly on going from methanol to benzene, thus reducing the k_2/k_{-1} ratio.

In this paper we report kinetic results on the piperidino substitution of (I) in benzene, in the temperature range 10-30 °C. We shall show that in a solvent where no lyate ion is present, this reaction is catalysed by piperidine.

RESULTS AND DISCUSSION

Compound (I) gave the substitution product (III) on treatment with piperidine in benzene in high yield as indicated by t.l.c. and/or u.v.-visible (200-450 nm) spectral analysis of the reaction mixtures.

A plot of the apparent second-order rate constants $(k_{\rm A})$ of piperidino-substitution versus piperidine concentration ([PIP]) shows a more than linear increase of $k_{\rm A}$ with increasing [PIP] (see Figure and Table 1). There is little doubt that the curves go through the origin; thus the reaction is wholly piperidine-catalysed and no spontaneous decomposition of intermediate into products is detectable $(k_2 = 0)$.

A plot (not shown) of $k_A/[PIP]$ versus [PIP] is linear in the concentration range 0.1 - 1.0 M and the relation (1)

$$k_{\rm A}/[\rm{PIP}] = k_0 + k_{\rm PIP}[\rm{PIP}] \tag{1}$$

A more or less slight upward curvature in plots of $k_{\rm A}$ versus amine concentration has been observed in other cases 2c-f and attributed to a medium effect. We

Plot of piperidine concentration versus apparent second-order rate constant k_A for piperidino substitution of (I) at 20 °C in benzene

have already shown³ that the addition of polar substances to the hydrophobic solvent (benzene) can affect the reaction rate by changing the properties of the medium: the slight increase of $k_A/[PIP]$ values with [PIP] and the small kinetic effect of pyridine (Table 2) can be interpreted along similar lines. The levelling-off of third-order kinetic constants beyond [PIP] 1.0m is an interesting consequence of the drastic change introduced in the solvent composition but we are unable, at present, to give a good explanation for it.

The observation that piperidino-substitution of (I) in benzene is third order overall (second order in amine) deserves more comment. The stabilizing interaction between the ammonium proton and the oxygen of the ortho-like nitro group in (II) (built-in solvation)⁴ is a

TABLE	1
-------	---

Kinetic constants for the piperidino-substitution of 2methoxy-3-nitrothiophen (I) in benzene at 10-30 °C a

	$10^4 k_{\rm A}/{\rm l} {\rm mol^{-1} s^{-1}}$			$10^4 k_{\rm A} [{\rm PIP}]^{-1}/{\rm l}^2 {\rm \ mol}^{-2} {\rm \ s}^{-1}$		
[PIP]/M	10.0 °C	20.0 °C	30.0 °C	10.0 °C	20.0 °C	30.0 °C
0.101	0.657	0.897	1.29	6.50	8.88	12.8
0.202	1.44	1.85	2.44	7.13	9.16	12.1
0.404	3.26	4.03	5.37	8.07	9.98	13.3
0.606	5.20	6.67	8.67	8.58	11.0	14.3
0.808	7.49	9.45	12.0	9.27	11.7	14.8
1.01	9.41	12.3	16.3	9.32	12.2	16.1
1.24	11.8	16.6	19.8	9.52	13.4	16.0
1.47	14.5	20.0	24.4	9.86	13.6	16.6
1.70	16.5	23.6	27.9	9.71	13.9	16.4
2.04	20.3	29.4	34.7	9.95	14.4	17.0

^a A least-squares treatment of $k_{\rm A}/[{\rm PIP}]$ values by equation (1), ([PIP] = 0.101-1.01M) gives, respectively: at 10.0 °C, 10⁴ k_0 6.50 \pm 0.25, 10⁴ k_{PIP} 3.16 \pm 0.40, r 0.969; at 20.0 °C, 10⁴ k_0 8.48 \pm 0.12, 10⁴ k_{PIP} 3.81 \pm 0.19, r 0.995; at 30.0 °C, 10⁴ k_0 11.8 \pm 0.3, 10⁴ k_{PIP} 4.02 \pm 0.56, r 0.963. From k_0 values one calculates ΔH^{2} at 20 °C as 4.5 kcal mol⁻¹ and ΔS^{2} at 20 °C as -57 cal mol⁻¹ K⁻¹.

factor usually sufficient to assist decomposition of the intermediate.²⁹ Thus piperidino-dehalogenation in benzene of 1-halogeno-2-nitrobenzenes 2g,5 and of 2-halogeno-3-nitrothiophens^{3b} are not piperidine catalysed and the formation of the intermediate is rate determining.

TABLE 2

Kinetic constants for the piperidino-substitution of 2methoxy-3-nitrothiophen (I), at 20 °C, in the presence of pyridine a

0.2040.306 0.408 0.509 [pyridine]/M 0.102104kA/l mol-1 s-1 1.85 1.85 1.891.971.981.99^а [PIP] == 0.202м.

The peculiar ortho-like relation⁶ between the 2methoxy and the 3-nitro groups in (I) exemplified by the quinonoid structure (IV) causes the first transition state for piperidino-substitution to resemble the reaction intermediate (large k_{-1}): because no compensating effect operates on k_2 , and because of the poor nucleofugicity of the methoxy leaving group (low $k_3^{\text{PIP}}[\text{PIP}]$ values) the overall reaction rate is controlled by decomposition of the intermediate.

Consistent with the complexity of the reaction mechanism, a low activation enthalpy and a high abso-

As far as the mechanism of catalysis is concerned, our data do not allow us to make any definite choice between the SB-GA mechanism^{2a} and bifunctional catalysis,^{2h} although the first has been favoured in recent papers.^{2e, i}

EXPERIMENTAL

Synthesis and Purification of Compounds.-Compound (I),⁷ (III),⁸ piperidine,⁹ pyridine,^{3a} and benzene⁹ were prepared and/or purified according to methods previously reported.

Kinetic Measurements .- The kinetics were followed spectrophotometrically as previously described.3b,8 The concentrations used were $10^{-3}M$ for (I) and those indicated in the Tables for piperidine and pyridine. The rate constants are accurate to within $\pm 3\%$.

We thank the C.N.R. for support.

[8/555 Received, 23rd March, 1978]

REFERENCES

¹ Part 3, D. Spinelli, G. Consiglio, and R. Noto, J. Org. Chem.,

1978, **43**, 4038. ² (a) C. F. Bernasconi, 'MTP International Reviews of Science: Organic Chemistry, Series 1, 'Butterworths, London, 1973, vol. 3, p. 33; (b) F. Pietra, *Quart. Rev.*, 1969, 23, 504; J. Miller, 'Aromatic Nucleophilic Substitution,' Elsevier, Amsterdam, 1968; C. F. Bernasconi and H. Zollinger, Helv. Chim. Acta, 1966, 49, C. F. Bernascom and H. Zohinger, Hete. Chim. Acta, 1906, 49, 103; 1967, 50, 3; J. F. Bunnett and C. F. Bernasconi, J. Amer. Chem. Soc., 1965, 87, 5209; J. Org. Chem., 1970, 35, 70; J. F. Bunnett and R. H. Garst, J. Amer. Chem. Soc., 1965, 87, 3879; J. Org. Chem., 1968, 33, 2320; C. F. Bernasconi, ibid., 1967, 32, 2947; C. F. Bernasconi and P. Schmid, ibid., p. 2953; J. A. Orvik and J. F. Bunnett, J. Amer. Chem. Soc., 1970, 92, 2417; F. Pietra, Tetrahedron Letters, 1965, 2405; F. Pietra and D. Vitali, J. Chem. Soc. (B) 1968, 1200; F. Pietra, D. Vitali, and S. Frediani. J. Chem. Soc. (B), 1968, 1200; F. Pietra, D. Vitali, and S. Frediani, J. Chem. Soc. (B), 1968, 1200; F. Pietra, D. Vitali, and S. Frediani, ibid., p. 1595; B. Lamm and I. Palmertz, Acta Chem. Scand., 1976, **B30**, 15, 21; (c) C. F. Bernasconi and H. Zollinger, Helv. Chim. Acta, 1966, **49**, 2570; (d) D. M. Brewis, N. B. Chapman, J. S. Paine, J. Shorter, and D. J. Wright, J.C.S. Perkin II, 1974, 1787; (e) C. F. Bernasconi and R. H. de Rossi, J. Org. Chem., 1976, **41**, 44; (f) S. Di Pietro, L. Forlani, and P. E. Todesco, Gazzetta, 1977, **107**, 135; (g) F. Pietra and F. Del Cima, Tetra-hedron Letters, 1967, 4573; (h) F. Pietra and D. Vitali, *ibid.*, 1966, 5701: J. Chem. Soc. (B) 1968 hedron Letters, 1907, 4073; (n) F. Fletra and D. Vitan, 1900, 5701; J. Chem. Soc. (B), 1968, 1318; G. Illuminati, F. La Torre, G. Liggieri, G. Sleiter, and F. Stegel, J. Amer. Chem. Soc., 1975, 97, 1851; (i) C. F. Bernasconi, R. H. de Rossi, and P. Schmid, ibid., 1977, 99, 4090. ³ (a) D. Spinelli, G. Consiglio, and R. Noto, J.C.S. Perkin II, 1977, 136- (h) I. Heterocyclic Chem. 1977, 14, 1325.

1977, 1316; (b) J. Heterocyclic Chem., 1977, 14, 1325.
 ⁴ J. F. Bunnett and R. J. Morath, J. Amer. Chem. Soc., 1955,

77, 5Ö51.

⁵ J. A. Brieux and V. Delofeu, Chem. and Ind., 1951, 971.
 ⁶ D. Spinelli, G. Guanti, and C. Dell'Erba, J.C.S. Perkin II, 1972, 441; D. Spinelli, R. Noto, and G. Consiglio, *ibid.*, 1976, 747;

D. Spinelli, R. Noto, G. Consiglio, and A. Storace, *ibid.*, p. 1805.
⁷ C. D. Hurd and K. L. Kreuz, J. Amer. Chem. Soc., 1952, 74,

2965.⁸ D. Spinelli, C. Dell'Erba, and A. Salvemini, Ann. Chim. (Italy), 1962, 52, 1156.

⁹ D. Spinelli, C. Dell'Erba, and G. Guanti, Ann. Chim. (Italy), 1965, **55**, 1260.